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ESTIMATING SOIL CARBON LEVELS USING

AN ENSEMBLE KALMAN FILTER

J. W. Jones,  W. D. Graham,  D. Wallach,  W. M. Bostick,  J. Koo

ABSTRACT. Soils have been proposed as carbon storage sinks to help reduce atmospheric carbon dioxide levels and global
warming. Benefits could accrue to farmers, due to beneficial effects of soil organic carbon on productivity, and to society by
managing land to increase soil carbon. Measurements are needed to determine if practices aimed at increasing carbon levels
are effective and to quantify amounts of carbon stored for verification purposes. However, measurements are expensive and
have high errors relative to annual changes in soil carbon. In this article, we develop an Ensemble Kalman filter (EnKF)
approach that combines measurements with predictions from a simple model, taking into account errors in measurements,
model parameters, and model predictions. The EnKF was used to estimate soil carbon at annual time steps and to estimate
an uncertain soil carbon decomposition rate parameter. A sensitivity analysis was conducted to evaluate the effects on EnKF
estimates of uncertainties in measurements, model predictions, and the decomposition rate parameter. The EnKF estimates
of soil carbon were compared with true values that were generated using a Monte Carlo method. Results showed that EnKF
estimates of soil carbon levels and annual changes of soil carbon were more accurate than measurements alone for all
combinations of conditions studied. The root mean square error of estimation was reduced from around 700 kg/ha based on
measurements alone to about 225 kg/ha using the EnKF procedure. The unknown soil carbon decomposition parameter
converged to its true value after about seven years. This EnKF method can be modified to incorporate more comprehensive
models of cropping systems and soil carbon, to incorporate spatial variability, and to assimilate remote sensing inputs. It is
simple to implement and has considerable promise for practical use in soil carbon sequestration projects.

Keywords. Data assimilation, Soil carbon, Stochastic model, Uncertainty.

ncreasing atmospheric carbon dioxide (CO2) and other
trace gases are causing increases in air temperature and
possibly affecting regional patterns of precipitation and
hydrological processes (IPCC, 1996; Rosenzweig and

Hillel, 1998). The concentration of CO2 in the atmosphere at
the end of the 20th century exceeded 360 volumetric parts per
million (ppmv), higher than that projected by Waggoner in
1969 (Allen, 1994), and continuing increases of about 1% per
year are projected (IPCC, 1995, pp. 196-197). Research has
shown that global average temperature has increased by
about 0.5°C since the early 1960s (Parker et al., 1994). A
number of studies conducted during the last 15 years have
projected likely negative impacts of climate change on agri-
culture as well as other sectors (Adams et al., 1990; Rosen-
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zweig et al., 1995; Kaiser and Drennen, 1993; IPCC, 1996).
Methods for reducing this buildup of CO2 in the Earth’s atmo-
sphere have been suggested, and include reduction in emis-
sion of CO2 as well as increasing storage of carbon (C) in
forests, soils, and the oceans (Rosenberg, 2000; IPCC, 1996).
Research is being conducted to determine the potential for
storing C in soils, taking into consideration biophysical, land
management,  and economic factors (Antle et al., 2001; Antle
and McCarl, 2001; Yost et al., 2002; Jones et al., 2002). In-
centives for this research derive from not only concern about
global climate change, but also from the considerable bene-
fits that higher soil organic matter levels will have on agricul-
tural productivity, especially in developing countries where
soil degradation has led to decreases in yield and food insecu-
rity (Antle and Uehara, 2002).

If soil C sequestration is to become an accepted mecha-
nism for reducing atmospheric CO2 levels, a soil carbon
accounting system needs to be developed (Antle and Uehara,
2002). Direct measurements of soil C can be made, but they
are expensive, and yearly changes in soil C are small relative
to the errors associated with sampling and measuring soil C.
For example, consider a field in which the mass of organic C
in the top 20 cm of a soil is 16,000 kg[C]/ha (about 0.6% C
on a mass basis), and annual change in soil C is about
300 kg[C]/ha (about 0.01% on a mass basis). Yost et al.
(2002) reported standard deviations of soil C measurements
that ranged between 0.05% and 0.50%. Thus, standard errors
of soil C measurement may be several times higher than the
annual change in soil C. Although geostatistical methods
may help reduce these errors (Yost et al., 2002), measurement
errors will remain high. Biophysical models can be used to
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estimate soil C and its changes under different weather, soil,
and management practices (Parton et al., 1988, 1994; Jones
et al., 2002). However, although these models may produce
precise estimates, they are imperfect, and parameters for
specific field situations are uncertain. Thus, predictions of
changes in soil C by models are also uncertain.

Techniques exist to combine models and measurements to
obtain estimates of system states, such as soil C, and model
parameters,  such as decomposition coefficients for soil
organic C. One widely used technique is the Kalman filter
(Maybeck, 1979; Welch and Bishop, 2002). This technique
is based on dynamic models that describe rates of change of
state variables and predict their values over time. The
Kalman filter approach starts out with a model prediction to
estimate the state of a system and then uses measurements to
conditionally update the estimates in an optimal way. The
uncertainties  in model predictions and measurements are
used along with measurements at a point in time to obtain a
maximum likelihood estimate of the true state of the system
and the uncertainty associated with this estimate. When the
model is linear and errors are Gaussian and time independent,
procedures are relatively straightforward. This approach has
been applied to a number of problems in agriculture and
forestry (Or and Groeneveld, 1994; Tani et al., 1992;
Wendroth et al., 1999). Extensions to the Kalman filter have
been developed to overcome difficulties associated with
non-linear models (e.g., Albiol et al., 1993; Graham, 2002).
The Extended Kalman filter linearizes a non-linear model at
each discrete time step before applying the Kalman filter
estimator. This approach is also useful when parameters of
the model are to be estimated. It works well for simple
models, but linearizing complex models, such as soil C
models or crop models with uncertain parameters, is
complicated.  Another extension to Kalman filtering has been
developed for such situations, the Ensemble Kalman filter
(Burgers et al., 1998; Eknes and Evensen, 2002; Margulis et
al., 2002).

The purpose of this article is to evaluate the use of
Ensemble Kalman filter (EnKF) methodology for estimating
soil C and its changes over time. To do this, we introduce a
simple model of soil C dynamics with one state variable and
one unknown parameter. The state estimate and state
covariance values are propagated between measurement
times using Monte Carlo methods, and they are updated
periodically when measurements are available. Using a
synthetic example, measurements are simulated using the
model to estimate the true states at the measurement time,
and then a random variation around the perfect state is added
based on an assumed measurement error variance. A
sensitivity analysis is performed to demonstrate the effects of
uncertainties  in measurements, model predictions, and
model parameters on uncertainty in soil C estimates. This
article focuses on estimation of soil C over time (years) at a
point in space; it does not address spatial variability or
aggregation of estimates over large areas.

MATERIALS AND METHODS
SOIL CARBON MODEL

A discrete time model is used to simulate soil organic
carbon (Xt) as it changes over time, using a time step of one
year. We assume that there is one pool of C in the soil and that

fresh organic matter carbon (Ut) may increase this pool, while
during the same annual time step, microbial activity
decomposes both existing soil C and Ut. The model also has
one parameter (the rate constant for decomposition, R) that
is constant over time, but it is not known with certainty.
Conceptually, the field in which soil C estimates are being
made belongs to a population of fields with decomposition
rate parameters that are not known with certainty. The R
value for the field in question thus belongs to a distribution
of true values that are normally distributed with mean and
variance. Here, we assume that the mean R is R0, and this
value is used as an initial estimate of R in the EnKF
procedure. The resulting model thus has one state variable
(Xt) and one parameter (R), which are to be estimated using
the EnKF. We assume that there are uncertainties in model
predictions of soil C and in the decomposition rate parameter.
State equations for the non-linear model are:
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where
Xt  = soil organic carbon in year t (kg[C]/ha)
R  = rate of decomposition of existing soil C (1/yr)
R0  = initial estimate of soil C decomposition rate (1/yr)
b  = fraction of fresh organic C that is added to the soil

in year t that remains after one year
Ut  = amount of C in crop residue that is added to the soil

in year t
εt = model error for soil C (kg[C]/ha)
η  = error in initial estimate of decomposition rate R

(1/yr).
Model error (εt) includes uncertainties in U and b as well

as uncertainties due to the fact that the model is a
simplification  of reality. We assume that model errors and the
parameter estimator error are normally distributed and are
not correlated. Thus:

( )
( )2

η

2
ε

,0N~

,0N~

ση

σεt

(2)

where
2
εσ  = variance of model error for soil C
2
ησ  = variance of error for estimate of soil C

decomposition rate R.
The model error (εt) is a random process that changes over

time but is uncorrelated with time (i.e., white noise), whereas
the decomposition rate parameter error (η) is a random
variable that does not change with time.

MEASUREMENTS

In order to evaluate the use of EnKF to estimate soil C, a
time series of measurements was necessary. Soil C measure-
ments (Zt) may be made each year or less frequently, but
measurements of R are not possible. Thus, the model has two
variables that are to be estimated, but only one is observable.
Furthermore, it was assumed that the soil C measurement
error is normally distributed, independent in time and
independent from X and R. In this article, a time series of
measurements was generated using equation 1 (to generate
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true soil C values) and an assumed measurement error. In
reality, true values of soil C are seldom, if ever, known.
Measurement values were generated using two steps. First,
one time series realization of soil C (Xt) was computed using
equation 1 with the true value of the parameter R. Then,
measurements were generated by randomly sampling from
the distribution of Z (εZ) and adding this random error to soil
C values at each discrete time step. Thus, Zt was generated
by:

tztt ,XZ ε+= (3)

where
Zt = measurement of soil C in year t (kg[C]/ha)

εz,t = error in measurement, ),0(N~ε 2
Z, σtz

This procedure was repeated for different values of εZ and
R0 for sensitivity analyses, as described below. In real
applications,  actual measurements would be used.

THE ENSEMBLE KALMAN FILTER
The Kalman filter is a set of mathematical equations that

are used to obtain optimal estimates of the state of a system.
There are two types of equations in a Kalman filter: (1) time
update equations, and (2) measurement update equations
(Welch and Bishop, 2002). The time update equations project
forward in time the current predictions of the system state and
covariance.  The measurement equations provide feedback
by incorporating a new measurement to obtain an improved
estimate of system state and covariance. In a discrete-time
Kalman filter, a linear stochastic model is used to project the
state and covariance estimates forward to the next time step
k. At measurement times, the model-projected state and
covariance values are updated by using the measurement and
its covariance characteristics. A Kalman gain matrix is
computed to update estimates of system state and covariance.
This process is repeated over time in a recursive fashion,
projecting values for each discrete time step and updating
those estimates for time steps when measurements are
available.

The Ensemble Kalman filter (EnKF) follows this same
general approach for non-linear models but relies on Monte
Carlo methods to project state and covariance values between
measurement times (Burgers et al., 1998; Margulis et al.,
2002). The soil C model (eq. 1) is non-linear due to
multiplication  of R and X, both “states” of the system to be
estimated.  For our model, the EnKF is used to estimate states

of the system for each time step (denoted X
^

t and R
^

t). The
EnKF used in this article was adapted from Margulis et al.
(2002). Measurements are combined with model predictions
to obtain the best estimates of soil C and the decomposition
rate parameter, given all of the measurements that have been
made up to the current time.

A “truth” scenario is first generated using equation 1 for
Xt, with one particular sequence of εt and value of R to
represent reality. The EnKF uses Monte Carlo simulation to
propagate an ensemble of equally likely Xt, each with a
unique sequence of εt and value of R. This is the full range of
possible outcomes {Xt}. Adding a random measurement
error to the “truth” scenario described above produces
“measurements”  of reality. Each equally likely outcome in
the ensemble of realizations is then updated, using the
Kalman gain, to take advantage of the measurement of soil

C at time t. This step will produce a new ensemble of
estimates, which will have reduced variance relative to
model -projected estimates. The mean of this updated

ensemble is the optimal estimate of soil C ( X
^

t
) and the

decomposition rate parameter (R
^

t
).

ENSEMBLE CREATION, PROPAGATION, AND UPDATE

A number of pairs (X, R) are generated at time t = 0 as
ensemble replicates or realizations of the initial values of soil
C and the decomposition rate parameter, respectively. The
basis for these pairs of variables is our prior knowledge of
their probability distributions, namely ε0 and η. We assume
that initial values of X and R are not correlated. Then, each
ensemble replicate (X ,|

j
tzt  and j

tzt ,|R ) is simulated, using the

model shown in equation 1 and a Monte Carlo approach to
produce random deviates at each time step. This provides an
ensemble of equally likely realizations of X and R at time t +

1, denoted 
j

tzt ,|1X + and 
j

tzt ,|1R + , before using the new measure-

ment to update the estimate at t + 1. Each ensemble replicate
is treated the same. After the model is used to simulate the
values of both X and R at time t + 1, the Kalman gain matrix
is used along with the measurement to update the estimates
for each ensemble member, denoted j

tzt 1,|1X ++ and j
tzt 1,|1R ++

(where j represents the jth member of the ensemble), taking
into account the measurement taken at t + 1.

Figure 1 shows this process of using the model to estimate
values of soil C at time t + 1 for each replicate and the updated
estimates of soil C, conditioned on measurement at time t +
1. Although the figure only shows points depicting soil C,
each ensemble replicate consists of both the soil C ( j

tzt ,|X ) and

the rate parameter ( j
tzt ,|R ) estimates. After the state variable

and parameter are updated at a time step, the resulting
ensemble of values ( j

tzt 1,|1X ++  and j
tzt 1,|1R ++ ) is used as initial

values for another prediction-updating step at time t = t + 2.
If there are no measurements at a time step, then the
uncorrected values of the ensemble are used as initial values
for the next step. This process continues sequentially, first by
using equation 1 to propagate the variables over a time step,
and then by updating the values at each time that a
measurement is available.

The equations for the update step are given by:
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where KX,t+1 and KR,t+1 are Kalman gain values for updating
X and R, respectively. In the equations above, the superscript
j represents an ensemble replicate. The use of |z,t in the
subscript indicates that estimates of the variables have been
conditioned on measurements made up to time t (or time t +

1). The j
tz 1, +ε  is a random deviate based on the error

associated with measurement of soil C for the jth replicate at
time t + 1 (Margulis et al., 2002). This random sample is taken
from the distribution of measurement error to adjust each
replicate measurement value to account for variations among
samples. Since an ensemble is used at each step, expected
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Figure 1. Schematic of the Ensemble Kalman filter procedure. An en-
semble of variables, created at time 0 (a), is simulated over time. The mod-
el is used to predict the state variables (for each ensemble replicate) for
time t + 1 (b) using values at time t. Then measurements are used to update
the estimates of variables for time (t + 1). These updated values (c) are used
as initial values for the next prediction/update step. The heavy line in the
figure shows the true value of soil C.

values of X and R ( X
^

t and R
^

t) can be estimated at each time
step, as well as their variances and covariance.

For our model, which has two equations and two variables,
the Kalman gain matrix can be written as:
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where the terms of the covariance matrix are the variance of
soil C predictions at time t ( 2

,X tσ ), the variance of estimates

of soil C decomposition rate at time t ( 2
,R tσ ), and the

covariance between X and R estimates at time t (σXR,t).
These variance and covariance values are estimated from the
ensemble before state estimates are updated. The measure-
ment matrix for this problem is the vector [1 0], since
measurement is made only of soil C, the first state variable,
and R is not measured. See Welch and Bishop (2002) for the
general formulation of the Kalman gain matrix. The terms
inside the brackets in equation 5 simplify to the scalar term

[ ] 12
Z

2
,X

−
σ+σ t . Thus, after matrix multiplication, equation

5 can be simplified and written as two terms, as follows:
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Note that although R is not measured, the measurement of
soil C provides information for refining the estimate of R via
the covariance term. Note also that K varies with time; it is
recalculated  each time a measurement is made using

covariance terms computed from the ensemble before the
update step.

The Kalman gain variables are used to weight the updated
estimate on the basis of error variances. Note, for example,
that if measurement error variance ( 2

Zσ ) is very small relative
to model prediction variance ( 2

,X tσ ), then KX,t approaches

1.0, and the updated estimate of j
tzt 1,|1X ++  (eq. 4) will be

approximately  the value that was measured. In contrast, if
measurement error is large relative to prediction error, then
KX,t will be closer to 0.0, and the updated estimate will be
near the predicted value. Furthermore, if the covariance term
used to compute KR,t is small, then the estimate of R
( j

tzt 1,|1R ++ ) will remain near its estimate from the previous

step. However, if the covariance term is large, then the
differences between measured and predicted soil C will result
in adjustments to R in the update step.

IMPLEMENTATION OF THE ENSEMBLE KALMAN FILTER

A computer program was written to implement the EnKF.
Values for model inputs and parameters that represent soils
in western Africa were used. First, a set of base case values
is described. Then a sensitivity analysis is described in which
various inputs and parameters are changed to study their
impacts on EnKF estimates of soil C and the decomposition
rate parameter.

Base Case
The initial value of soil C was assumed to be

16,000 kg[C]/ha in the top 20 cm of soil, which is about 0.6%
carbon on a mass basis. This value approximates the levels
of soil carbon found by Yost et al. (2002) and J. B. Naab
(personal communication) in agricultural fields in Mali and
Ghana, respectively. Variance of this initial soil C estimate
was assumed to be 20,000 (kg[C]/ha)2 (standard deviation of
141 kg[C]/ha). We also assumed that the model error
variance ( 2

εσ ) was equal to 20,000 (kg[C]/ha)2. The initial
value of R0 was assumed to be 0.020, which is in the range
of values given by Pieri (1992) for soils in western Africa.
The uncertainty in R was represented by a variance ( 2

ησ ) of
0.0001. The value of Ut was set at a relatively high value of
2,000 kg[C]/ha, constant across all years. This value
represents a crop with a vegetative biomass of 5,000 kg/ha,
assuming 40% of the biomass is C. The value of b was
assumed to be 0.20, meaning that 20% of the vegetative
biomass would remain on the field. Typically in western
Africa, animals graze fields after grain is harvested. The
variance of soil C measurements ( 2

Zσ ) was set at 500,000,

which is a standard deviation of 707 kg[C]/ha or a standard
error of measurement of 0.0253% C on a mass basis. This
value is somewhat low relative to the range in standard
deviations of measurement errors (0.058% to 0.21% C)
reported by Yost et al. (2002); additional values will be used
in the sensitivity analysis. The number of replicates was set
to 1,000, and measurement frequency was set to one
measurement each year. In preliminary runs, results were not
affected when the number of replicates was varied between
100 and 4,000.

Equation 3 was used to generate measurements (Zt) for t =
1 through 50 years, starting with an initial value of soil C of
16,000 kg[C]/ha and a true value of R of 0.010 for the specific
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field. The EnKF estimates of R
^

t
 should converge to the true

value for the specific field. Table 1 summarizes the values of
parameters and initial conditions used to simulate measure-
ments and to implement the EnKF for the initial set of values.
The EnKF was used to estimate X and R and their variances
for each of the 50 years for which measurements were
generated.

Results of mean estimates of X
^

t and R
^

t  and their variances
( 2

,X tσ  and 2
,R tσ ), computed from estimates made after the

EnKF update procedure) were plotted versus time to
demonstrate behavior of the EnKF procedure. The resulting
estimates of soil C and its annual changes were compared
with those estimated using measurements alone. Root mean
square errors (RMSE) between true soil C in each year and
measurements (RMSEZ) were computed and compared with
RMSE between true soil C and EnKF estimates (RMSEKF)
for the first 10 years. In addition, annual changes in soil C
estimated from measurements ( 1ZZ −− tt  ) and from EnKF

estimates (using expected values of replicates, X
^

t � X
^

t�1)
were compared with true values that were generated, and
RMSE values of annual soil C changes were computed using
these errors over the first 10 years (RMSE’Z and RMSE’KF,
respectively).

Sensitivity Analysis
A sensitivity analysis was conducted to characterize the

effects of different variables on uncertainties in soil C
estimation and on the stability of the decomposition rate
parameter estimates. Table 2 summarizes the variables
modified in this analysis and the values used for each run. The
values shown in the first row of table 2 are those used in the
base case. For each sensitivity analysis run, all variables were
kept at their base case values except the variable being
studied. For example, when studying the effects of the mean
value of R, three runs were made changing R0 for each run
(to 0.005, 0.03, and 0.06) but keeping the other variables at
the values listed in the top row of table 2. Results were

Table 1. Values of parameters, initial conditions, and inputs for
the base case implementation of the Ensemble Kalman filter.

Variable Definition Units Value

X0 True value of soil C
at time 0

kg[C]/ha 16,000

R True value of mineralization
parameter

1/yr 0.010

2
Zσ Variance of measurement,

constant over time
(kg[C]/ha)2 500,000

Zσ Variance of measurement,
constant over time

(kg[C]/ha) 500,000

2
εσ Variance in model estimates

of soil C, each year time step
(kg[C]/ha)2 20,000

εσ Variance in model estimates
of soil C, each year time step

(kg[C]/ha) 20,000

R0 Initial value of soil C
decomposition parameter

1/yr 0.015

2
ησ Variance of decomposition

rate parameter
(1/yr)2 0.0001ησ Variance of decomposition

rate parameter
(1/yr) 0.0001

Ut Input of C to the soil each year
(assumed constant)

kg[C]/ha 2,000

b Proportion of annual soil C
that remains after one year

- - 0.20

nreps Number of ensemble
replicates used

- - 1000

Zfreq Measurement frequency 1/yr 1

Table 2. Values used for each variable in sensitivity analysis. Values
in first row (with *) were used as the base case. A total of

19 runs were made. Variables are defined in table 1.

R0
2
ησ 2

εσ 2
Zσ Ut Zfreq

0.020* 0.0001* 20,000* 500,000* 2,000* 1*

0.005 0.00001 1,000 10,000 0 1/2
0.030 0.00005 40,000 2,000,000 1,000 1/3
0.060 0.00015 80,000 8,000,000 4,000 1/5

analyzed by comparing values of expected values of ( X
^

t
, R

^

t
 )

with measurements and true values. In addition, variances in
estimates of both X

^

t
 and 

R
^

t

 were compared along with
RMSEZ, RMSEKF, RMSE’Z, and RMSE’KF.

RESULTS
BASE CASE

Soil C increased by 8,500 kg[C]/ha in the base case
simulations over the 50-year time period. Figure 2 shows
measurements, EnKF estimates, and true values of soil C
over time for the base case (second line from top of graph).
It is clear from this figure that the EnKF estimates were closer
to the true values (heavier line) most of the time, and that
those estimates did not fluctuate as much from year to year
as measurements of soil C. The standard error of EnKF
estimates of soil C was 397 kg[C]/ha in the tenth year
(table 3). This error converged to a minimum value of about
300 kg[C]/ha after 30 years, which is less than half of the
measurement error assumed for this base case (standard
deviation of measurement = 707 kg[C]/ha). The RMSEKF
value was 226 over the 50 years.

Annual increases in true soil C values varied from year to
year due to the random variability denoted in equation 1.
Figure 3 shows that annual changes in soil C varied from
about -100 to about 460 kg[C]/ha per year for the first 30
years of the simulations. Estimates of annual changes in soil
C based on measurements, however, varied between -1200
and +1800 kg[C]/ha per year. The EnKF estimates of annual
changes were much more stable (fig. 3). RMSE’KF was 241
kg[C]/ha per year, considerably less than RMSE’Z value of
869 (table 3).

5000

15000

25000

35000

45000

0 20 40 60
Years

S
o

il 
C

 (k
g

/h
a)

Measured: U=2000 Measured: U=0
Measured: U=1000 Measured: U = 4000
True C, Baseline

Figure 2. Effect of different levels of fresh organic C input on soil C esti-
mates from measurements and from the EnKF. Starting with the lowest
curve, C inputs were 0, 1000, 2000, and 4000 kg[C]/ha each year, respec-
tively. Solid lines are EnKF estimates, points are measurements, and the
dashed line is the time course of true soil C values for the base case.
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Table 3. Effect of variance of measuring soil C on errors associated with soil C and decomposition rate parameter (R) estimates. Values in
top row are for the base case. RMSE are errors in estimating true soil C from measurements (subscript z) and from the EnKF

procedure. RMSE’ are errors in estimating annual changes in soil C from measurements and from the EnKF procedure.

Measurement
Variance,

Standard Error
of C Estimate,

Standard Error
of R Estimate, RMSE RMSE RMSE’ RMSE’Variance,

2
Zσ  (kg/ha)2

Standard Error
of C Estimate,
t = 10 (kg/ha)

Standard Error
of R Estimate,
t = 10 (1/yr)

RMSEZ
(kg/ha)

RMSEKF
(kg/ha)

RMSE’Z
(kg/ha)

RMSE’KF
(kg/ha)

500,000 397 0.0036 577 226 869 241

10,000 86 0.0027 82 76 123 110
2,000,000 712 0.0050 1154 377 1738 288
8,000,000 1136 0.0073 2308 654 3477 312
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Figure 3. Annual estimates of soil C changes, comparing those made from
measurements and from the EnKF with true values.

The decomposition rate parameter converged from its
initial value of 0.020 to a value approximating the true field
value of 0.010 after about seven years. The standard error of

estimate for R
^

t after ten years was 0.0036 (1/yr) (table 3).
This value continued to decrease over time as more
measurements were used to update the estimates, converging
to about 0.001 after 50 years.

EFFECTS OF MEASUREMENT ERROR

Varying measurement error variance ( 2
Zσ ) had a large

influence on standard errors of soil C estimate. At ten years,
standard errors varied from 86 to 1136 kg[C]/ha as measure-
ment error variance was increased from 10,000 to 8,000,000
(table 3). However, EnKF estimates of soil C and annual
changes in soil C over 50 years varied much less; RMSEKF
varied from 76 to 654, and RMSE’KF varied from 110 to
312 kg[C]/ha (table 3). Figure 4 shows the time courses of
EnKF estimates for 50 years as well as the true values of soil
C (heavy line). The measurements in figure 4 were generated
with an error variance of 2,000,000. EnKF estimates of soil
C based on different error variances follow the same pattern,
but estimates derived from larger measurement errors deviate
more from the true values, as expected. Estimates for the
lowest value of measurement error, 10,000 (kg[C]/ha)2, are
almost indistinguishable from the true values. Although
measurement error was less than model error for this case, the
EnKF process still provided estimates of soil C with less error
than the measurements (table 3), although not by much.

Uncertainties in estimation of R
^

t
 varied with measurement

error (table 3), but its expected values were not greatly
affected by the large variations in measurement error used in
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Figure 4. Ensemble Kalman filter estimates of soil C over time for differ-
ent magnitudes of measurement error. The observations (symbols) were
generated with an assumed measurement error variance of 2,000,000 (kg/
ha)2.

this analysis (0.0108 for the base case at t = 50 years vs.
0.0098 for the case with measurement error of 8,000,000).

EFFECTS OF MODEL ERROR

Varying model error ( 2
εσ ) from 1,000 to 80,000 only

marginally affected uncertainties in EnKF estimates of soil
C and its annual changes (table 4); at ten years, estimation
errors ranged from 373 to 445 kg[C]/ha. RMSEKF was lowest
(166) for the lowest model error used in the sensitivity
analysis. This error increased to only 308 for model error of

80,000. Uncertainties in estimates of R
^

t
 ranged from 0.0024

to 0.0054 (1/yr) as model error varied from its lowest to
highest value.

EFFECTS OF INITIAL VALUE OF DECOMPOSITION RATE
PARAMETER

Changes in initial value of R (R0) from less than half of the
true value (0.005) to six times the true value (0.060) had little
effect on errors of estimation of soil C after 10 years or on
EnKF estimates of annual changes in soil C over 50 years
(RMSE’KF, table 5). However, errors in estimation of soil C
over 50 years were degraded when R0 was six times higher

than the true value. After about 10 years, R
^

t
 values were close

to the true value (fig. 5), regardless of its mean value.
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Table 4. Effect of varying uncertainty in model predictions of soil C ( 2
��  ) on errors associated with soil C and decomposition rate

parameter (R) estimates. Values in top row are for the base case. See table 3 for explanation of the different RMSE columns.

Model Error
Standard Error
of C Estimate,

Standard Error
of R Estimate, RMSEZ RMSEKF RMSE’Z RMSE’KF

Model Error
2
εσ  (kg/ha)2

of C Estimate,
t = 10 (kg/ha)

of R Estimate,
t = 10 (1/yr)

RMSEZ
(kg/ha)

RMSEKF
(kg/ha)

RMSE’Z
(kg/ha)

RMSE’KF
(kg/ha)

20,000 397 0.0036 577 226 869 241

1,000 373 0.0024 577 166 869 173
40,000 417 0.0044 577 260 869 292
80,000 445 0.0054 577 308 869 369

Table 5. Effect of initial estimate of R on errors associated with soil C and decomposition rate parameter (R) estimates.
Values in top row are for the base case. See table 3 for explanation of the different RMSE columns.

Initial Estimate
of R (R0)

(1/yr)

Standard Error
of C Estimate,
t = 10 (kg/ha)

Standard Error
of R Estimate,
t = 10 (1/yr)

RMSEZ
(kg/ha)

RMSEKF
(kg/ha)

RMSE’Z
(kg/ha)

RMSE’KF
(kg/ha)

0.020 397 0.0036 577 226 869 241

0.005 398 0.0036 577 261 869 238
0.030 397 0.0036 577 345 869 259
0.060 396 0.0038 577 860 869 366
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Figure 5. Effect of mean value of soil decomposition rate on estimates of
R from the EnKF vs. time. Initial values of R were assumed to be the mean
values in each case, and the true value was R = 0.01 for each case.

EFFECTS OF DECOMPOSITION RATE ERROR

Table 6 shows uncertainties in EnKF estimates of soil C
and decomposition rate for different assumed uncertainties in
R. In most cases, these estimation errors were not affected
much at all, surprisingly. However, it is interesting to note
that the RMSEKF value was almost twice as high when the
uncertainty in R was assumed to be very low (0.00001).
Estimates of R improved very slowly from year to year in the

EnKF procedure for this low value of uncertainty. This
occurred because the actual error was high (a difference of
0.01 between initial and field value of R) compared with the

assumed uncertainty in R. Estimates of R
^

t
 never dropped

below 0.012 for this case, and only converged to this value
after 15 years. This result demonstrates that the initial
estimate of R must fall within the range characterized by the
assumed error; otherwise the EnKF estimates may not
converge.

EFFECTS OF ANNUAL INPUTS OF CARBON

Annual inputs of carbon (Ut) between 0 and 4,000
kg[C]/ha per year resulted in considerable differences in soil
carbon levels over time. Without any C input, soil C
decreased by 7,300 kg[C]/ha over 50 years, and it increased
by 24,300 kg[C]/ha when annual input was 4,000 C per year
(fig. 2). However, errors in estimating soil C and the
decomposition rate parameter remained nearly constant over
this entire range of Ut (table 7).

EFFECTS OF MEASUREMENT FREQUENCY

Varying frequency of measurements had a significant
influence on estimation errors. During years when measure-
ments were not made, errors in soil C estimation increased
(fig. 6). When measurements were available for updating the
estimate,  errors decreased. Figure 6 demonstrates the fact
that prediction errors grow considerably when predictions
are made without conditionally updating estimates based on
measurements. Annual estimates of soil C changes were not
made, since measurement frequency varied in this case.
Instead, estimates were compared of changes in soil C over
5-year intervals. Errors in estimates of 5-year soil C changes

Table 6. Effect of varying uncertainty in decomposition rate parameter ( 2
��  ) on errors associated with soil C and decomposition rate

parameter (R) estimates. Values in top row are for the base case. See table 3 for explanation of the different RMSE columns.

R Rate Error
Standard Error
of C Estimate,

Standard Error
of R Estimate, RMSEZ RMSEKF RMSE’Z RMSE’KFR Rate Error

2
ησ  (1/yr)2

of C Estimate,
t = 10 (kg/ha)

of R Estimate,
t = 10 (1/yr)

RMSEZ
(kg/ha)

RMSEKF
(kg/ha)

RMSE’Z
(kg/ha)

RMSE’KF
(kg/ha)

0.0001 397 0.0036 577 226 869 241

0.00001 344 0.0025 577 487 869 210
0.00005 388 0.0034 577 274 869 227
0.00015 400 0.0037 577 219 869 251
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Table 7. Effect of varying annual inputs of fresh organic C on errors associated with soil C and decomposition rate parameter
(R) estimates. Values in top row are for the base case. See table 3 for explanation of the different RMSE columns.

Annual C Input
from Crops,
Ut (kg/ha)

Standard Error
of C Estimate,
t = 10 (kg/ha)

Standard Error
of R Estimate,
t = 10 (1/yr)

RMSEZ
(kg/ha)

RMSEKF
(kg/ha)

RMSE’Z
(kg/ha)

RMSE’KF
(kg/ha)

2,000 397 0.0036 577 226 869 241

0 387 0.0039 577 222 869 235
1,000 392 0.0038 577 224 869 238
4,000 405 0.0033 577 229 869 246
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Figure 6. Variance of EnKF estimates of soil C vs. time for different fre-
quencies of measurement (ranging from one per year to one every five
years).

were 1,363 kg[C]/ha when measurements alone were used,
315 when the EnKF was used with annual measurements, and
581 when EnKF was used with measurements made at 5-year
intervals.

DISCUSSION
Results of this analysis show that estimation of soil C can

be improved by using the EnKF procedure. The use of the
EnKF was superior to measurements alone in all cases
compared. However, little information was available on
which to base values of model error and decomposition rate
error. Sensitivity analysis indicated that accurate estimate of
error in R may not be critical, as long as it is not too low.
However, soil C model error is critical. We used variances
ranging from 1,000 to 80,000, corresponding to standard
deviations of 32 to 383 kg[C]/ha. There are physical limits on
how much C can be added from plant material each year, and
limits on decomposition of existing soil C. In the cases
analyzed, maximum soil C change per year was about
800 kg[C]/ha when Ut was highest. Maximum annual
decomposition was about -500 kg[C]/ha when Ut was 0.
Thus, model prediction was constrained between -500 and
+800 kg[C]/ha per year, a range of 1,300. If we assume that
maximum error is about 1/4th of this range, and is
approximated by two standard deviations, then standard
deviation of error would be about 162 (a variance of about
26,000), which compares well with the base case value of
20,000. Model error should probably depend on the amount

of C added. For example, model error could be separated into
that associated with bare soil plus that associated with
addition of plant C.

Constant annual inputs of C from crops (Ut) were
assumed, although we know that this is not likely to occur in
nature. Measurements of annual crop residue added to the
soil could be made, perhaps through the use of remote
sensing, to implement this procedure under real conditions.
Uncertainties in these measurements could also be included,
as discussed above. Furthermore, a very simple model was
used to evaluate the potential use of the EnKF approach.
More complex models could be used to possibly reduce errors
of estimation. For example, the simple model could be
expanded to include more soil C pools, climate variable
inputs, and a simple model to simulate crop biomass. It is also
possible to incorporate existing soil carbon models, such as
CENTURY (Parton et al., 1988) or DSSAT-CENTURY
(Gijsman et al., 2002) into the EnKF procedure.

Finally, the procedure evaluated in this article estimated
soil C at a point where measurements are made annually or
less frequently. The ultimate value of this approach will be
realized when it is used over large areas in which measure-
ments are made only for a subset of fields. Additional work
is needed to extend this approach for spatial and temporal
estimation of soil C.
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